Dimension of a subspace and its orthogonal complement
Let
- Compute the dimension of
. - Determine the dimension of
, the perpendicular subspace in . - Find a basis for
.
View code
Let $W\subset {\bf R}^5$ be the subspace spanned by the set of vectors $\{\langle 1,-2,0,2,-1\rangle,\langle -2,4,-1,1,2\rangle,\langle 0,1,2,-2,1\rangle\}$.
\begin{enumerate}[label=(\alph*)]
\item Compute the dimension of $W$.
\item Determine the dimension of $W^\perp$, the perpendicular subspace in ${\bf R}^5$.
\item Find a basis for $W^\perp$.
\end{enumerate}