Diagonalization of a given matrix (2)
Let
- Find bases for the eigenspaces of
. - Determine if
is diagonalizable. If so, give an invertible matrix and diagonal matrix such that . If not, explain why not.
View code
Let $A=\begin{bmatrix} 6 & -2 & -1 \\ 10 & -3 & -2 \\ 0 & 0 & 1\end{bmatrix}$.
\begin{enumerate}[label=\alph*)]
\item Find bases for the eigenspaces of $A$.
\item Determine if $A$ is diagonalizable. If so, give an invertible matrix $P$ and diagonal matrix $D$ such that $P^{-1}AP=D$. If not, explain why not.
\end{enumerate}