Submodules via ideals

Oct 07, 2024 6:01 PM

Suppose R is a ring, IR is a left ideal, and M is a left R-module. Let IMM denote the subset of all finite I-linear combinations in M, i.e., $$IM = \left{\sum_{\text{finite}} i_k m_k,\mid, i_k\in I,, m_k\in M\right}.$$ Prove IM is a submodule of M.