Suppose R is a ring, IβR is a left ideal, and M is a left R-module. Let IMβM denote the subset of all finite I-linear combinations in M, i.e., $$IM = \left{\sum_{\text{finite}} i_k m_k,\mid, i_k\in I,, m_k\in M\right}.$$ Prove IM is a submodule of M.