An isomorphism of rings
Let
Hint: Start by showing the map
View code
Let ${\bf Z}\left[\sqrt{2}\right]=\left\{a+b\sqrt{2}\,|\, a,b\in{ \bf Z}\right\}$, and let $R\subset \operatorname{M}_2({\bf Z})$ be the ring of all $2\times 2$ matrices of the form $\begin{bmatrix} a & b \\ 2b & a\end{bmatrix}$. Prove ${\bf Z}\left[\sqrt{2}\right]$ is isomorphic to $R$.
\medskip
\noindent {\itshape Hint:} Start by showing the map $a+b\sqrt{2}\mapsto \begin{bmatrix} a & b \\ 2b & a\end{bmatrix}$ is a ring homomorphism.