Matrix and eigenvalues of a given linear transformation
Suppose
Determine the eigenvalues of
View code
Suppose $\{{\bf v}_1,{\bf v}_2,{\bf v}_3\}$ is a basis for ${\bf R}^3$ and $T:{\bf R}^3\to {\bf R}^3$ is a linear transformation satisfying the following:
\begin{align*}
T({\bf v}_1) &= 4{\bf v}_1+2{\bf v}_2\\
T({\bf v}_2) &= 5{\bf v}_2\\
T({\bf v}_3) &= -2{\bf v}_1+4{\bf v}_2+5{\bf v}_3.
\end{align*}
Determine the eigenvalues of $T$ and find a basis for each eigenspace.