Direct sums and idempotent transformations
Let
View code
Let $T:V\to V$ be a linear transformation on a finite-dimensional vector space. Prove that if $T^2=T$, then
\[
V=\ker(T)\oplus \operatorname{im}(T).
\]
Let
Let $T:V\to V$ be a linear transformation on a finite-dimensional vector space. Prove that if $T^2=T$, then
\[
V=\ker(T)\oplus \operatorname{im}(T).
\]